
ESD-TR-79-251

CONDUCTING AN INDEPENDENT REVIEW GROUP (IRG)
p ,EVALUATION OF C3 1 SOFTWARE

Daniel R. Baker, Captain, USAF
J David A. Herrelko, Captain, USAF

Charles J. Grewe, Jr., Lt. Colonel, USAF
0 Directorate of Computer Systems Engineering

Electronic Systems Division
Hanscom AFB, MA 01731

August 1979

Approved for Public Release;
Distribution Unlimited.

SLj DC 11119

Prepared for A

DEPUTY FOR TECHNICAL OPERATIONS
ELECTRONIC SYSTEMS DIVISION (AFSC)
HANSCOM AIR FORCE BASE, MA 01731

10
(oq

PAGES_
ARE

MISSING
IN

ORIGINAL
DOCUMENT

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any

purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

This technical report has been reviewed and is approved
for publication.

SMEs w. NEELY, JR.,Tr COt, USAF WLIAM J. 'T&DRE, GS-14
Acting Chief, Technology Applications Deputy DI ctor, Computer
Division Systems igineering
Deputy for Technical Operations

%ORMAND MICHAUD, ColoneRA USAF
Director, Computer Systems
Engineering

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whon Dsaa Ent aged)

READ INSTRUCTIONSR.EPORT DOCUMENTATION PAGE BEFORE COMPLETING FORMA
2GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

L E (and Subtitle)--- -- S TPEOF D ERIOCVERED

Londucting an _ndependent Review Group (IRG) /j
Svaluation ofI 63 o ftware'* Final____

T. U"ORI-,3. CONTRACT Oft GRANT NUMBER(*)
_ nie R. 6 ker, tain, USAF
"David. errelo atiUA

SarIeTP1 e we.- 1Lt Colonel, USAF
ft NIZAT044 AND DDRSS10. PROGRSAM ELEMENT, PROJECT, TASK

Directorate of Computer Systems Engineering (TO0I) AEA OOF INMBR

Electronic Systems Division (AFSC) PE280 64226

Hanscom AFB, Bedford, MA 01730
I I. CONTROLLING OFFICE NAME AND ADDRESS 1'12aRPOIRT-DATE

See Item 9 lI AuP-w*f479

M4 MONITORING AGENCY NAME & ADDIRESS(II difloreqit from Controlling Office) 1S. SECURITY CLASS. (of this report)

I A Unclassified

15a. DECL ASSI FICATION/ DOWNGRADING
SCH EDULE

16. DISTRIBUTION STATEMENT (of this Reporti)

Approved for public release; distribution unlimited

'7. DISTRIBUTION STATEMENT (of the abstract entered In Block 30, if different from Report)

I8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It necessary Mid Identify by block number)

* Independent Review Group
Evaluation Criteria
Software Development

20. ABSTRACT (Continue on reverse side If necessary Mid identify by block number)

This report provides guidelines and procedures for conducting Independent
Reviews of Air Force software systems acquisition programs.
Zxperiences of one recent Independent Review are used as the basis for
many of the examples, procedures, and recommendations of this report.
The Independent Review process is discussed in detail from the formation
of the Independent Review Group (lEG) to preparing the final report.
Examples of IRG data collection forms are provided. 1

DD JA 7 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (ften Date Entered)

CONTENTS

Page

SECTION 1 INTRODUCTION 5

SECTION 2 PREPARING FOR THE REVIEW 7
DEFINING THE PROBLEM 7
TEA1 COMPOSITION 9

The Team Leader10
The Technical Staff11
The Technical Secretary13

SCOPING TIlE EFFORT 14

SECTION 3 CONDUCTING THE REVIE&.16
ORIENTATION 16
DEVELOPING EVALUATION CRITERIA16
SOFTWARE DESIGN CRITERIA DEVELOPED BY THE IRG. 19
DATA COLLECTING AND ANALYSIS22

Assigning Evaluation Criteria to
Collection Forms - Example 25

SECTION 4 REPORTING THE RESULTS27
INDIVIDUAL TECHNICAL REPORTS 27
FINAL REPORT FORMAT28

Volume I - Executive Summary 28
Volume II- Technical Summary 30

SECTION 5 SUMMARY 34

APPENDIX A SAMPLE DATA COLLECTION FORMS 36
Conventions and Documentation Collection

Form37

Modularity of Task Programs Collection
Form40

Interconnections Collection Form 42
OS vs Task Responsibilities Collection

Form45
Technical Summary Form 46
Team Data Sheet Form47
Time Spent On IRG (In Hours) Form 48

00

-4-1

4.) l . , 1

3

SECTION 1} 1.0 INTRODUCTION

In January 1919, an Independent Review Group (IRG) fromi

the Electronic Systems Division (ESD) was successful in

analyzing and evaluating the applications software

development for one of the ongoing system acquisition

programs in the Air Force. The success of Lhat TRG was due

to many factors: the way the IRG was managed, the

composition and selection of team members, the technical

approach taken to review the software, the manner in which

the findings were presented, and the form of the

documentation. Prior to this review, no handbook existed to

assist the IRG. Instead, the IRG developed tools and

techniques as needed from day to day. Based upon this

oxperience, this paper describes the knd. L. , ':view

process and offers guidance tr,] L0013 to simplify the work

of analyzing the status future software development

activity.

SECTION 2

2.0 PREPARING FOR THE REVIEW

The independent review process usually boj;t; lftec

problems of cost, schedule, or):,rormance have attracted

senior level management attention to -i Lro'ibled program.

The nature of IRG inve-,z - jations is that the program is

seldom in a healthy condition. In the case of the

referenced IRG, the progi-in .nanager identified the so tw -ui

is a high risk element, because iL coaji 1 ,i. pass

Preliminary Qualification Tests (PQT). As a result, the

program manager requested ar. IRG investigation of the

software.

2.1, DEFINING THE PROBLEM

Figure I depicts the independent review c - om

initial client (program offb -4,) c.oli..ct to publication of

the final repo,'L. The IRG may be tasked at any pha,.e of

program development and to c$view any portion of software in

Lhe system. The IRG may also be task, . 0 i .te software

management areas, ,'uch as configuration control, test.

.3iscipline, or manpower. In any caie, an IRG must always be

created to in;vier specific questions and lirnTi .-! in scope to

the immediate problem. Tllt ,' of questions that could be

asked about the software developmi-,i .re:

a) ['IEPAR ING FOR THE REVIEW

DEFINE SELECT' SELECT

THE TEAM I NTERVIE TI 'EAM~

PROBLEM I EAI)ER CIE MEMBERS

b) CONDUCT ING THlE R?-'E

SCOPE DEVELOP COLLECT

THE I RG EVALUATION DATA AND

EFFORT OR IENTATION CRITRAANALYZE

REPORT ING THiE RESULTrS

F I CURE I '111K ~I N D II)N RV! I DU IOC

8

a) Given the curr',:nt. -oftware status, can the softwar,

jerform the required tasks?

b) WhaL I-:]. t) : i ...) ilished right now before the

ioftware can proceed in its development?

c) What change in direcL 1.)i i.. 1, r.,.

lavelopment take before it can be delivered to the field as

operable, reliable, maintainable co le?

The,s- j iri-tions are typically asked abouL sorl.v;are

which is not working. They could apply to software in any

phase of development. The technical : k;1.1t and information

needed to answ,;e!r L: -3u]uestions will differ for each Ph-i-,.

of davelopment, and for each program.

2.2 TEAM COMPOSITION

The team composition is by far the most ci'Ll.cil

:element of any IRG. The wheels of Sy~i.t V:,] 1 -.'.V) grind

in real time, and TRGs do noL have the luxury of months to

reflect on all the fine points they might wi h to c ')sider.

Therefore,

a) the teazn -must be competent

b) the team must have a leader

c) the team must understand its mission

d) the team must move fast, and work full-time on the

IRG

1.9

e) the team must not waste time re-inventing

administrative and technical review proczdiitwes that have

already been worked out by other IRG teams.

2.2.] THE TEAM LEADER

The team leader should have the authority to select the

team, contract the exact type of investigation, clarify any

constraints, establish a schedtilu., assign responsibilities,

make progress reports, direct th- tecir"Ical secretary,

obtain clerical support, edit and sign thank-you letters,

and approve or make all '"ornal presentations required.

Since an IRG effort is short and intense, the leader will

usually work long hours recording and planning -eac'h day. He

must be evaluating the teavn'-; ro.-,ilts, as they occur, so

that an TRG recommendation can be made as rapidly as

possible. He should have th-. Frol. say on the contents of

the execuLtive and technical summaries, and pce'e L ht-Lefings

to the program office, contractors, and others as required.

The following team leader jualifications are required

in order to respond to the above responsibilities. He must

have sev-"sl . of exoerience as a software manage':. 9 e

should be able to communicate t)i political and technical

issues conr' cooi.tng the team members. He must deal with

authority with the program office (PO) and contractor

inanagement. He must be current in the procurement process

I0

and have working level experience with the particulac stage

of software development under study. Since the leader will

be the only IRG member to witness and review the entire TRG

effort (the other members will be too busy with specific,

specialized tasks), he in'st have a corresponding system

level view of the IRG activities to scope the IRG results to

the overall PO software development effort.

Once selected, the leader should interview his client,

to formally determine the purpose. oF th1- ,'view and any

constraints on his work. Following the meeting, the leader

should draft a memorandum for record documenting the

uA.Ierstanding. There must be a contract between client and

team leader, to avoid misdirections and false starts, and to

insure that the purpose of the review is understood and the

product to be delivered is the right one.

2.2.2 THE TECHNICALJ STAFF

The rest of the team must be comprised of technical

experts, who have had considerable and direct experience

with software development. The IRG team should be tailored

to the job. For example, the referenced IRG was required to

evaluate software program listings in assembly and higher

order language (HOL). The individual team members were

required to learn the language, evaluate a great quantity of

code, and come to a conclusion in less than four days. This

11

type of effort requires a very experienced programming

group. However, just as much experience (of perhaps a

different type) is necessary with any phase of software

development. Poc instance, during a preliminary design, the

team would have to b, " hU. of evaluating designs, tracing

requirements, understanding specifications, and evaluating

hardware/software/firmware tradeoffs. This may require

system analysis, rather than programming, experience.

In addition to competence, the team must be ,matue.

The PO and the contractor under scrutiny will all be

ill-at-ease about the IRG process, and possibly resentful of

the extra attenLion, interference, and potential work

stoppage. The presence of a technically sound, but

unseasoned tean .unber may prejudice an otherwise successful

investigation. One thoughtless comment may cause a

contractor claim against the government, or may reveal an

'Air Force Only' piece of information that 4ill affect a

source selection or ol.iec procurement activity.

By definition, the TRG should consist of ?e)ple who are

independent of the act[,vties under review. These

individuals will not be familiar with the software or the

system, and will require orientation and technical

assistance by the PO as the revielw ,rogresses. A few

auxiliary team ,members who have knowledge of the iysten can

be helpful for answering quest.ions. However, caution must

1?

be taken here. if these individuals hIave a vested interest

in the IRG OUtC',R1(e, they will tend to 'explain away' the bad

software, and create a continual disruption as the team

works. Whether these auxiliary meinhers are from the PO or

the contractor, their limited role should be spelled out

before the review begins.

The team must function smoothly, with a minimum of time
lost in disagreements among members. The team leade" hlas

the final say on all matters, including jcb assignment, and

the individuals must be willing to accfpt any job assigned.

The IRG requires a non-hierarchical structUire that focuses

on skills rather t.hUan rnk. This structure must be forcned

out of the system requicements, 'sy'3tem design particulars,

and problem areas suspected, rather than by the dictates of

an organizational chart or personal ambition.

The team must be of a manageable size. The team

referenced had eight technical members, which approaches the

upper limit for effective mn-alagement. The team size can

grow and shrink from day to day, depending upon the

workload. However, all team members must be assigned full

time from the first day until the team leader releases theA.

2.2.3 THE TECHlNICAL SECRETARY

rhe team must have a technical secret.' to Iree the

technical staff from tasks that interfere with their work.

13

This person arranges lodging, rental cars, and air travel;

and performs routine administrative coordination with the

PO, the home offices of the team members, the contractors,

and prepares correspondence for the team leader's signature.

This job is ideril ro Lthe young officer or civil servant

Lcainee or upward mobility person, who has been transferred

from a job that is technical, but not directly software

related. The technical secretary must be kept on the job

from day one to the conclusion of the project. This

persons duties include the preparation and proofreading of

briefing slides, and the insulation of IRG members from the

numerous questions and inquiries. The technical secretary

should travel wherever the TRG team goes, and attend all

meetings. The technical. secretary was a major factor in

coordinating the work effort of the referenced IRG team.

2.3 SCOP[NG THE EFFORT

The first function that the team must accomplish is to

precisely define the scope of effort. Although the IRG is

directed to look at particular problems, a-id to answer

specific questions, the IRG itself must decide how to

investigate, and what to exclude from the investigation.

The team must determine how to investigate the software

areas that have problems, as well as the software which will

not be evaluated because it is out of scope. For instance,

the referenced IRG chose to evaluate applications software,

14

and not the operating system sofLwace, even though some of

the problem symptoms appeared to be operating system

failures. That decision was made after spending many days

with individuals familiar with the system.

!j

ii

° 15~

SECTION 3

3.0 CONDUCTING THE REVIEW

3.] ORIENTATION

The TRG must quickly learn their charter, the

constraints within which they must work, and the nctL,'i of

the system under review. The team leader should brief all

incoming members on their mission and ground rules. The PO

should arrange a top-down sequence of briefings to place the

system under review in context, and should make available PO

technical staff members to answer the question,; oF the IRG.

By receiving briefings, asking questions and reviewing the

status of program documention, the team will be able to

accurately scope the problem, and prepare for the eventual

detailed analysis.

3.2 DEVELOPING EVALUATION CRITERIA

The only way an IRG can conduct a detailed software

.analysis is to review the existing software product and/or

development methodology. During the process of scoping the

problem, the IRG team also identifies secLions of the

software project which ctquires in-depth analysis. Product

areas to consider include: dat base design, configuration

management, program listings, quality assurance, problem

16

identification and pursuit, documentation, testing

discipline, and specifications (functional, prel.n;.,',r,

detailed design). It is likely that more than one software

area requires in-depth analysis. For example, after scoping

the problem for over a week: applicaLions software program

listings, software trouble reports, configuration managememt

procedures, and the data base management procedures were the

specific areas of investigation chosen.

Once the TRG has scoped the effort and identified the

software areas requiring a detailed analysis, the next step

is to evaluate the software areas. However, this cannot be

done until 1-he 1.eam has established criteria in a

'checklist' form for evaluating the software. These

criteria should be a set of standards, specifications, or

procedures which the team will use as 'goodness' checks for

the software. These criteria must be carefully developed,

s.nce the Ik" will use them to answec Lhe specific questions

that were previously posed by the team leader and the

client. The criteria must have the following features:

a) They must be practical. Allow for the status of the

current software, and do only what must be done. to determine

exactly the software tro.ible spots. The software is aJ.rrady

in trouble, so applying rigid textbook standards is not the

answer.

~17

b) Start with criteria already used for the software

development-- with current standards, specifications, or

procedures that the government or the conte'ictor has applied

to the software. If no criteria have been used, then the

IRG will have to establish a minimum set of criteria. This

minimum set should be based on fundamental design

principles, rather than specifics such as stL'ctured

programming, or code walk-t.roughs.

c) Be flexible and broad. This first cut at

establishing cciteria will probably not be usable as a

point- by-point checklist. Instead, it will probably be

note like categories of items, in outline form, to be filled

in specifically just before the actual soitware is

evaluated, and as more information is gathered about the

software. Establish guidelines rather than details. The

details will come later.

d) Tailor any criteria to the specific system. The

system hardware, software, or operations may be specific

enough so that unique criteria can be established which

would apply to t.his system and no others.

As an example, the referenced TRG developed its own

checklist, because few criteria were placed upon or used by

the contractor during the software development. Because of

Lhe importance of the criteria list, the following

18

paragraphs desccibe in detail the manner in which the

referenced put together its list of criteria.

3.3 SOFTWARE DESIGN CRITERIA DEVELOPED BY THE IRG

Prior to any investigation of actual code or

specifications, the IRG selected a list of seven broad

principles which, if adhered to, would assure good design,

implementation, traceability, and maintainability of a

software program throughout its life cycle. The IRG did not

attempt to make this list of principles comprehensive enough

to include everything that could be done during software

development to assure good design. The IRG also did not

attempt to give a lot of detail about each design principle

that was selected--that would be done later. The seven

design principles were Modularity, Conventions,

Documentation, Error Detection and Reporting,

Interconnections, OS vs Task Responsibilities, and Testing.

These seven principles were selected based upon three

factors:

a) The IRG was limited in time and personnel. A large

number of design principles would dilute the IRG effort.

b) The IRG team members had differing backgrounds and

level of expertise . The team consisted of members from

industry and government, with experience in mainframe

19

computers, system acquisition, research and development,

maintenance, and planning. Each member approached software

from different angles and emphasized some design principles

more than others. However, all team members agreed that

certain major design principles were absolutely necessary to

assure good software development. The seven principles

selected were thought to be the minimal requirements for

good software design.

c) The known status of the software. The IRG team was

aware that the software was going through tests, already

coded, and encountering severe problems. The team knew how

the software was organized into tasks. They had been

briefed on the interrupt, memory management, task

scheduling, and T/O management responsibilities of the

software, and they were aware of the stated purpose of the

IRG: to evaluate the existing applications software for its

ability to pass the required tests and the software's

ability to be maintained over its life. The seven design

principles were selected to evaluate the software based upon

its given status.

Once the seven principles were selected, a list of

attributes was attached to each one, which broadly described

each principle and outlined the specific items used during

the investigation. These attributes were later cefined into

actual data collection forms.

I

SOFTWARE DESIGN PRINCIPLES/ATTRIBI rEs

1. MODULARITY - Top down (branching

- Single entrance, single exit
- Single function
- Interfaces

2. CONVENTIONS - Register usage

(against a standard - Variable naming
from the contractor) - Flowchart consistency

- Protocol

- Calling conventions
- Coding conventions

3. DOCUMENTATION - C5.; reflect code
- Are modules explained
- Adequate data/variable comments

4. ERROR DETECTION REPORTING - Centralized
- Consistency/Rel iability
- Completeness

5. INTERCONNECTIONS - Global/local variables
- Parameter and data passing
- Data Base directories/design

6. OS vs TASK RESPONSIBILITIES - Memory management
Task scheduling & management
(interrupts)

- I/0 management (XORMNGR)
7. TESTING - How patches are handled in code/

documenta tion
- Test inputs/criteria for passing
- Loading on system
- Reporting
- Test right things; do they pass
- 'rest tools (simulators, dump, trace)
- Failure diagnosis/correction

(flow easy to find problem's cause?
flow easy to fix?)

2]I

~ I

3.4 DATA COLLECTING AND ANALYSIS

To insure an nbjective analysis, hard data is needed.

This requires quantification as much as possible. (Although

the 'gut feel' is important, it is not the basis for million

dollar decisions.)

What can be quantified? This depends upon the software

product under investigation. In general, grading scales can

be established for those matters requiring quality judgement

by the team members. These numbers can be weighted,

averaged, and aggregated, and presented to show where the

team feels the software is weakest, and where of the

collection forms: 'Do the code listings have adequate,

relevant comments?' This is a subjective evaluation of

overa.'I maintainability which is hard to quantify. A

grading scdle was used with ranges from 'Completely Agree

6' to 'Completely Disagree - 0' to quantify the analysts'

perceptions. The team can also count lines of code

examined, to show how much of the software the team looked

at. These counts can serve as a statistical basis for later

computations showing where coding problems occur, as a

function of lines of code. The counts expose modules of

code that are too big or too small. For example, the IRG

discovered that modules exceeding 500 lines of code were of

very poor quality and needed repair. The team could then

project this to indicate that 100% of the large modules the

teami looked at needed repair, and there was a certain

percentage of large modules in ll the code, so that a given

percentage of code needed repair. Many other methods can be

used to quantify results. The Doint is, quantify wherever

possible, or the team will be talked out of any conclusion

the team may reach.

Quantific.tion requires a s~t of evaluation criteria.

From these ccite'ia, a set of data collection forms can be

created. Each criterion can be analyzed an expanded into

point-by-point details on standardized data collection

forms. As example, one of the criteria may be 'Adequate

Documentation'. One of the details, which the team, member

can check directly in a pco,.,n listing could be 'Is data in

the pcogcam adequately cominented?' Another documentation

detail could be 'Relevant comments in the progcam listing'.

These details should be gcaded and structured so that both

statistical and subjective information can be gathered at

the same time. A good rule is to tell the team that any

statistical number not backed up by examples, or any

subjective comment not backed up by numbers will not count

in the final team analysis.

One problem the IRG will encounter is a learning curve.

It takes a finite amount of time for even the most competent

person to meet a new problem, come to grips with its scope,

and do a thorough, detailed analysis. The IRG cannot expend

much time for learning and preparation. The IRG team must

learn and evaluate at the same time. Therefore, the data

collection forms should be of varying difficulty to allow

the IRG team to become faniliar with the software product at

the same time as collecting progressively more difficult

data.

Lastly, the data collection forms should be brief. No

one wants to spend more of his time analyzing the collection

form than analyzing the software product. No collection

form should extend over one page, even though several

collection forms may be necessary for the different sets of

ccitria.

An example of what all this means: As mentioned

befoce, the IRG considered four software products: the

applications software program listings, the software trouble

reports, the configuration management procedures, and the

data base management procedures. Tht seven design

principles were applied to these products. brief

description of this process, and descriptions of the

collection forms used by the IRG members assigned to the

applications software progrcdn listing, is contained in

Appendix A.

3.4.1 ASSIGNING EVALUATION CRITERIA TO COLLECTION FORMS -

EXAMPLE

Once the list of the TRG software design principles and

attributes was finalized, a plan was devised for use of the

principles during the IRG investigation. The first day of

investigation would be a review of program listings for the

purpose of cataloging information and familiarization with

the programs. The next few days would be spent with a more

detailed investigation, using a subset of the same code

which was investigated during the first day. Two design

principles were investigated the first day: Conventions and

Documentation. Four design principles were investigated the

next few days: Modularity, OS vs Task Responsibilities,

Interconections, and Error Detection and Reporting. r ach of

these six design principles was investigated by each of the

IRG team members assigned to go through the code. The

seventh design principle, Testing, was assigned to another

IRG team member, and was investigated independent of the

code. Also, one of the attributes (data base

directories/design) listed under the Interconnections design

principle was investigated by another team member,

independent of the code.

Of the IRG team members assigned to look at code (there

were six such members), each investigated an assigned

section of code and all used the same design principles and

C-)

attributes. This was done to insure a standardized summary

and to insure that all major sections of code were covered.

This was accomplished by having each team member fill out a

collection form on each task to be investigated. These

r forms constituted the member report on how a task program

met the chosen principles.

SECTION 4

4.0 REPORTING THE RESULTS

4.1 TNDIVIDUAL TECHNICAL REPORTS

Up to this point, a process and given examples of an

IRG approach to analysis of a software technical problem

have been described. This approach has been designed to

produce an in-depth, unbiased and consistent analysis, based

upon hard facts gathered from the software project under

investigation. In fact, each analyst should be required to

summarize his findings and report them to the team leader,

using a standard final report form established by the team

leader.

There is one item, however, which cannot be covered by

any standard form. That item is a perception by the

individual analyst on the true status of the software he

analyzed. This perception is based upon many hours of

analysis, with a lot of ccoss-checking of results between

items of his section of the software project, and between

other sections analyzed by the other team members. It is

based on his experience and in some cases upon talking with

the individuals who developed the software. These findings

ace not part of the data collection forms. However, this

perception is valuable, and should be part of the standard

27?

I

summary. If the analyst is asked to give his opinion of the

software, he will more than likely support it with examples

as best he can. Therefore, the team leader must require

this viewpoint to be expressed, and it should be included,

unedited, as part of the final report.

4.2 FINAL REPORT FORMAT

The final report should be written in two volumes.

Volume I should be an executive summary giving a high level

view of the team's activities, conclusions, and

recommendations. Volume IT should be a technical report,

containing the large amount of technical data, detailed

analysis, and individual reports that were produced during

the IRG.

4.2.1 VOLUME I - EXECUTIVE SUMMARY

The purpose of Volume I of the final report is to

present the IRG approach, findings, and recommendations.

Very briefly, the following outline was used by the IRG.

a) Introduction. This describes the system under

investigation and the organizations and people responsible

foc establishing the IRG.

b) Purpose. This describes the questions to be

answered by the IRG, as well as a brief description of the

approach taken to answer the the questions.

c) Scope. This describes what is included and excluded

from the IRG investigation.

• d) Team Composition. This states the organizations the

team members belong to, their relationship to the program

under investigation, and their familiarity with the

software.

e) Approach. This describes the criteria and

collection forms used to evaluate the software. Also, it

describes the specific items of the software product that

received an in-depth analysis.

f) Technical Summary. The extent of the IRG analysis

and the severity of the problems associated wth each

evaluation criteria is described. It gives the rercntage

of software that was reviewed. The percentage should be by

analyst as well as a total for the team. A short paragraph

should be written which summarizes the severity of the

problems associated with each criteria the team used. Each

paragraph should describe the criteria used, the

applicability of the criteria within the software, and the

resulting problems and recommendations for each criteria.

g) Conclusions. This answers the questions described

under the Purpose section of the executive summary report.

It catagorizes all the problems, and relates the severity c¢t

the problems to each question. Technical recommendations

should be made on which areas of the software should be

corrected.

-I h) Recommendations. This section emphasizes the

technical recommendations of the Conclusion section. it

should describe what must be done to implement corrective

action. This recommendation should estimate the impact on

the final software product (quality, schedule, performance,

etc.) of implementing, as well as not implementing, the IRG

technical recommendations.

4.2.2 VOLUME 11 - TECHNICAL SUMMARY

The purpose of Volume 1T of the final report is to

provide the support for the conclusions and recommendations

expressed in Volume I. Volume IT describes in very great

detail t0e approch taken by the IRG, and the data collected

during the analysii. Very briefly, the following outline

was used by the IRG.

a) Introduction, Purpose, Scope, Team Composition, and

Approach. These sections are identical to Volume 1. This

is to make Volume II a stand-alone document.

b) Technical Summary. This section should specify the

detailed analysis conducted by the IRG. The overview should

describe the assignments to each team member, and the number

of days each member spent on each assignment. The

collection forms should be described in detail. The purpose

and type of information required by each form should be

desccibed. A technical analysis should be presented. This

is a summary of the findings of each collection form

extracted from all the collection form summaries created by

the team members. The last section of this technical

summary should be additional comments and recommendations by

each analyst. These comments should be extracted from the

analysts& individual summaries, and presented alongside the

analysts' names. It is important that these additional

comments not be summarized, because they deal with findings

not specifically asked for in the collection forms.

The Volume II report also included the following

information as appendices.

c) Team Composition (Appendix I). The team composition

should include: l)the mailing address of each team member,

2)a st:ort resume of software development experience of each

team member, and 3)a weekly record of time spent on the TRG

in hours by each team member. The team leader should

prepare a team data sheet for each member to supply his

resume, address, and work hours.

d) Persons Contacted (Appendix 2). The IRG should

list, by organization and individual, each person contacted

throughout the couLse of the investigation.

#3

d) Briefing Slides (Appendix 3). The TRG will produce

findings, conclusions, and recommendations which will be

briefed to the organizations responsible for establishing

the IRG. Those briefing slides should be a part of the

technical report.

f) Daily Memoranda of Activities (Appendix 4). Part of

the team leader's responsibility will be to record each

day's activities. This is necessary, because the IRG should

have a history to trace the development of its activities

and conclusions. That daily record should be part of the

technical report.

g) Completed Collection Forms (Appendix 5). The

collection forms filled out by the TRG members contain the

raw data which form the basis of the TRG technical

summaries, findings, conclusions, and recommendations.

These collection forms should be included, as they were

written, directly into the technical report. Also, a blank

copy of all the collection forms used should be included.

h) Individual Technical Reports (Appendix 6). The

technical reports should be presented exactly as written by

the individual team members. These technical reports

represent a summary of each individual's analysis, as

perceived by the individual. (The technical summary for

Volume II is actually a condensed digest of these team

I\

members' findings.)

i) Acronyms and Abbreviations (Appendix 7). A list of

all abbreviations and acronyms used in Volumes T and TI of

the final report should be provided.

33

33

SECTION 5

5.0 SUMMARY

A software IRG investigation of a troubled ongoing

system acquisition program is an intense, challenging job.

The IRG must produce an accurate analysis of the problems

and prepare technical recommendations for solutions in a

very short time, usually under suspicious, unfriendly

conditions on a crash basis, while on TOY. The IRG success

depends upon excellent people, specific questions,

limitations of scope, and good planning. This paper has

presented a picture of one successful TRG. It could be

beneficial to other IRG teams in the future to help the

planning portion of thtir effort.

CONVENTIONS AND DOCUMENTATION COLLECTION FORM

The first day, the team investigated two design

principles: Conventions and Documentation. Originally, the

IRG team planned to analyze the coding conventions against

contractor standards. This plan was aborted after

determining that the contractor's standards were limited and

would not have provided information necessary to make a

comparison. The actual collection form was titled

"Standards and Conventions".

The first day was viewed as an opportunity to become

familiar with the software as well as to gather useful

statistical information. To accomplish this, a

mechanical-type analysis which required counts, yes/no

answers, and little analysis was performed. Both

Conventions and Documentation fell into this category and

were combined into one collection form. The attributes

listed for each principle were refined and a total of ten

items was finally used for the analysis. The items required

quantitative and subjective ratings by each team member.

Eight of the ten items could be answered by looking at

program listings, the other two by reference to design

specifications. Not all questions were relevant to all

tasks, for instance, some design specifications were out of

date and both assembly and HOL coded programs were

investigated.

! 3'/

~ The first day was designed to examine a large volume of

code. The IRG team believed this would indicate trends and

severity of bad software practices and provide a statistical

level of confidence for any conclusions which would be made

during the next few days.

I

33

Date:__

STANDARDS AND CONVENTIONS Analyst:

CPCI:

CPC: CONFIG.

TASK PROGRAM: CONTROL: VERSION

LANGUAGE: SYSGEN DATE:

PATCHES
TRAILING?

LINES OF CODE ANALYZED
A B C D E F

1. Task programs are adequately described by
Header Comments or in the appropriate C-5

2. Code listings have adequate, relevant comments. A B C D E F

3. Data in the program is adequately commented. A B C D E F

4. Registers, constants are defined as EQU A B C D E F
statements.

5. In-line data literals are not used. A B C D E F
(i.e., AND R3, 0177400)

6. Program counter relative jumps are not used. A B C D E F
(i.e., JMP $+7)

7. Conventions for common subroutines, common A B C D E F
data, and IPP data packets are recognizably
standard. (i.e., are parameters to sub-
routines always passed with registers or
variables in consistent ways?)

8. Conventions for OS service calls are consistent. A B C D E F

9. C-5 specs and code listings reflect one another A B C D E F
accurately. (i.e., flows and corresponding code
can be located and tracked with comparative ease)

10. Flowcharts honor conventions consistently. A B C D E F
(i.e., standard symbols, flow conventions, branch
conditions)

A. Completely agree; B. Strongly agree; C. Generally agree;
5. Generally disagree; E. Strongly disagree; F. Completely disagree.

39

MODULARITY OF TASK PROGRAMS C OLLECTION FORM

The IRG considered modularity to be a good indicator of

how well each task program was structured. The individual

attributes of the Modularity design principle were tailored

to specifics about our particular software (such as memory

page boundandaries and HOL loops).

A total of eight items was stressed in the Modularity

collection form. All eight of these items required only

numerical or yes/no responses. The intent was to force

quantification of the analysis. Also, each team member was

instructed to provide comments, references, and diagrams to

back up any nuoibecs which reflected bad task program

modularity. In this manner, each team member could support

his subjective analysis of the task modularity.

I

1 4

DATE:

MODULARITY OF TASK PROGRAMS ANALYST:

CPCI:

CPC: CONFIG.

TASK PROGRAM: CONTROL: VERSION

LANGUAGE: SYSGEN DATE:

LINES OF CODE ANALYZED

No. Loops (Task Internal)

No. ENTRY/EXIT POINTS

No. DSPL UNCONTROLLED GOTOs

No. FUNCTIONS BOUND TO A TASK

SIZE OF CODE (Memory Use)

No. Functional Relationships
(Intra-Memory Page Transfers
between functions)

No. Recognizable Functions
in a memory page

Task Proqram extend over a sinqle paqe

41

INTERCONNECTIONS COLLECTION FORM

The IRG considered interconnections to be a good

indication of how standard the connections were and how

difficult it would oe to understand and use any commonality

between and within tasks. The individual attributes of the

Interconnection design principle were expanded slightly and

used for the collection form. Although not specifically a

part of the collection form, certain error detection and

reporting schemes would be reported, as applicable.

A total of six items was stressed in the

Interconnections collection form. These items required both

numerical and subjective responses. It was an easy matter

to obtain the numerical responses, but it was more difficult

to analyze the goodness, visibility, and appropriateness of

the task interconnections. The collection form required

team members to support their subjective responses with

in-depth analysis and specific examples.

42

DATE:__

INTERCONNECTIONS ANALYST:_ _ _ _

CPCI:__

CPC:__
CONFIG.

TASK PROGRAM: CONTROL: VERSION

LANGUAGE: SYSGEN DATE:

PATCHES
TRAILING?

ai

LINES OF CODE ANALYZED

No. DYNAMIC MEMORY VARIABLES A B C D E F

No. GLOBAL VARIABLES A B C D E F

No. CALLING SEQUENCES A B C D E F

No. DIFFERENT CALLING SEQUENCES
(includes Return Conventions and
includes register vs. variable A B C D E F
data passing)

VISIBILITY OF CALLING SEQUENCES A B C D E F

No. COMMON ROUTINES USED A B C D E F

A. Completely agree; B. Strongly agree; C. Generally agree;

D. Generally disaqree; E.Strongly disagree; F. Conpletely disagree.

43

OS VS TASK RESPONSIBILITIES COLLECTION FORM

The IRG studied this topic because of reports received

by the team prior to the detailed investigation. These

reports indicated inconsistency and inappropriate division

of responsibility between functions of the operating system

(OS) and individual tasks. The IRG team considered this

analysis to be a good indicator of how well control

responsibility was managed by indivdual task programs and

whether programs were consistent in their approach to OS

interfaces.

A total of eight items was stressed in the OS vs Task

Responsibilities collection form. These items required both

numerical and subjective responses. A major part of the

analysis included the Error Detection and Reporting design

principle, since error indicators and error checking are

integral parts of most OS calls. Consistency and

traceability were the major items the collection form

stressed, and both a numerical and descriptive response to

the collection form items was required.

DATE:

OS vs. TASK RESPONSIBILITIES ANALYST:

, (Include Common Subroutines)

ICPCI:

CPC:_______
CONFIG.I TASK PROGRAM:

TCONTROL: VERSION

LANGUAGE: SYSGEN DATE:

PATCHES
TRAILING?

LINES OF CODE ANALYZED

MEMORY MGMT.
No. DIFFERENT WAYS OF HANDLING
SHORT DESCRIPTION OF EACH WAY

ONE FOR ONE ALLOCATE/RELEASE YES/NO circle

TRACEABLE (EASE) A B C D E F

TASK SCHEDULING UNDERSTANDABILITY A B C D E F
(DESCRIPTION, HOW WHY)

CLASS II ERROR DETECTION & REPORTING

No. DIFFERENT METHODS

No. ERROR RETURNS CHECKED

DESCRIBE EACH METHOD

A. Completely agree; f. Strongly agree; C. Generally agree;
Q. Generally disagree; . Strongly disagree; , Completely disagree.

45

TECHNICAL SUMMARY

"NOTE: Try to keep your summary to one double-spaced typed page for each
Design Principle analyzed (i.e. Modularity of Task Programs, Inter-
connections, etc.)."

Analyst: Date:I"NOTE: The following format applies to each Design Principle writeup."

1-4. Design Principle Name:

a. Data Summary: (mostly amounts, counts, etc.)

b. Examples: (at least two specific examples where a Design Principle
violation can be found in the code). Also describe the examples
and give the code reference.

c. Quantify what you looked at (i.e. scope, relative goodness, badness,
etc.).

d. Bottom line feeling: must be rewritten, redesigned, should be re-
written, etc., relate to testability and maintainability.

e. Final recommendations.

5. Additional Comments: (concerns for things found that do not relate to
the other four categories).

46

TEAM DATA SHEET

Full Name:

Rank/Grade:

Title:

Organization:

Full Mailing Address:

Phone Number:

Formal Education:

Short Statement of S/w Development Experience:

4I7

TIME SPENT ON IRG (IN HOUR)

VWK OF:
Team Member IJan 8 Jan 15 Jan15 an 22 Jan TOTAL

GRAND TOTAL

48

